Effect of manganese doping on Li-ion intercalation properties of V2O5 films
نویسندگان
چکیده
added directly during sol preparation. Stable and homogeneous Mn-doped vanadium oxide sol was obtained and the films were fabricated by dip-coating, drying at ambient, and then annealing at 250 C in air for 3 h. X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and electrochemical analyses have been employed to characterize and analyze the crystaland microstructures, surface morphology and Li-ion intercalation properties of both Mndoped and undoped V2O5 films. Mn-doped V2O5 films exhibit excellent cyclic stability with a fading rate of less than 0.06% per cycle, significantly better than that of the pure V2O5 films (0.8% per cycle). Mn-doped V2O5 films have demonstrated a large discharge capacity of 283mAh/g with a current density of 68 mA/g, again much higher than 237 mAh/g of V2O5 films. A possible explanation for such significant enhancement in lithium ion intercalation capacity, cyclic stability, and rate performance of Mn-doped V2O5 films has been discussed.
منابع مشابه
Enhancement of intercalation properties of V2O5 film by TiO2 addition.
Although it is well-known that TiO2 incorporation can greatly improve the cyclic stability of V2O5, the influences of TiO2 addition on the Li+ intercalation properties of V2O5 remain an issue of debate in literature. In this paper, we report on a systematic investigation of the preparation and intercalation properties of V2O5-TiO2 mixture films. The present work demonstrates that high Li+ inter...
متن کاملAtomic layer deposition of Al2O3 on V2O5 xerogel film for enhanced lithium-ion intercalation stability
V2O5 xerogel films were fabricated by casting V2O5 sols onto fluorine-doped tin oxide glass substrates at room temperature. Five, ten and twenty atomic layers of Al2O3 were grown onto as-fabricated films respectively. The bare film and Al2O3-deposited films all exhibited hydrous V2O5 phase only. Electrochemical impedance spectroscopy study revealed increased surface charge-transfer resistance o...
متن کاملStructural and electrical properties of In-doped vanadium oxide thin films prepared by spray pyrolysis
The In-doped vanadium pentoxide nanostructures with different doping levels including 0, 10, 20 and 30 at.% were prepared by the spray pyrolysis technique. The prepared thin films were characterized by the x-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results revealed that the films were crystalline in tetragonal phase. Increasing the In-doping level made the structure...
متن کاملDependence of electrochemical properties of vanadium oxide films on their nano- and microstructures.
Platelet- and fibrillar-structured V2O5 films have been prepared by solution methods, and their electrochemical Li+ intercalation properties have been studied. Platelet film consists of 20-30 nm sized V2O5 particles with random orientation, whereas fibrillar film is comprised of randomly oriented fibers though most of them protrude from the substrate surface. These platelet- and fibrillar-struc...
متن کاملV2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N2 annealing
V2O5 xerogel films were fabricated by casting V2O5 sols onto FTO glass substrates and annealing at 300 C for 3 hours in nitrogen and air. The films annealed in nitrogen and air possessed different grain size and crystallinity. Optical absorption measurements and electrochemical impedance analyses revealed a reduced optical bandgap and enhanced electrical conductivity of N2 annealed V2O5 film. L...
متن کامل